Quick notes on Supersymmetric Quantum Mechanics I


Bosonic Harmonic Oscillator:

$H = a a^{\dagger} + \frac{1}{2}$

Where  

$a = \frac{1}{\sqrt{2}}(p - i x)$

$a^{\dagger} = \frac{1}{\sqrt{2}}(p - i x)$

with commutation relations :

$[a^{\dagger}, a] =1$
$[a^{\dagger}, a^{\dagger}] =0$
$[a, a] =0$

Fermionic Harmonic Oscillator:

$H = b b^{\dagger} - \frac{1}{2}$

with anticommutation relations

$\{b^{\dagger}, b^{\dagger}\} =0$
$\{b, b\}=0$

Consider:

 $H = aa^{\dagger} + bb^{\dagger}$

with  Fock space:

  $| \#bosons, \#fermions \rangle$

One seeks for example:

$Q|1, 0 \rangle = |1, 1 \rangle$

$Q = a b^{\dagger}$
$Q^{\dagger} = b a^{\dagger}$

$Q$ is called a supercharge.


Bosonic state: Even number of fermions
Fermionic state: Odd number of fermions

Consider $N = 2 $ supersymmetry
$Q_1|boson 1 \rangle = |Fermion 1 \rangle$
$Q_2|boson 1 \rangle = |Fermion 2 \rangle$
$Q_1^{\dagger}|Fermion 1\rangle = |boson 1 \rangle$
$Q_2^{\dagger}|Fermion 1 \rangle = |boson 2\rangle$


Supersymmetry can be broken

     - Spontaneously broken
            - $[H, Q] = 0$   So the Hamiltonian preserves supersymmetry but the ground state does not.
             -$Q| 0 \rangle \neq 0$
             -$Q^\dagger | 0 \rangle  \neq 0$

    - The "Witten Index" tells you if supersymmetry is spontaneously broken

           $W(\beta) =  Tr (-1)^F  e^{-\beta H}$
                          $=\sum n_b (E_i) e^{- \beta E_i} - \sum n_f (E_i) e^{- \beta E_i}$
   
                            
                          Where $n_b$ is the number of bosons;
                                      $n_f$ is the number of fermions.
        
                         If $W(\beta) \neq  0$ supersymmetry is not spontaneously broken
                         If $W(\beta) =  0$ Then supersymmetry is broken


Spontaneously broken supersymmetry  leads to goldstino (fermions)

Spontaneously broken unitary symmetry leads to  goldstone modes (bosons)

If the ground state has zero energy


             











Comments

Popular posts from this blog

Dark Matter and Particle Mass Bounds --- Quick notes II

INTRODUCTION